ON BURNSIDE'S PROBLEM

BY R. C. LYNDON

1. Introduction. Let B be the group on q generators defined by setting the pth power of every element, for some prime p, equal to the identity(1). A method, based on the free differential calculus of R. H. Fox, will be applied to study the quotients $Q_n = B_n/B_{n+1}$ of the lower central series of B, for $n \le p+2$ (2). Our main results were obtained earlier by Philip Hall, using a different method(3).

To state these results, let $\psi(n)$ be the rank of the free abelian quotient F_n/F_{n+1} , where F is the free group on q generators. (Witt [11] has shown that $\psi(n) = n^{-1} \sum_{d|n} \mu(n/d) q^d$.) Then Q_n will be the direct product of a certain number $\kappa(n)$ of cyclic groups of order p, where $\kappa(n) \leq \psi(n)$. We show that:

(I)
$$\kappa(n) = \psi(n)$$
 for $n < p$;

(II)
$$\kappa(p) = \psi(p) - \binom{p+q-1}{p} + q;$$

(III)
$$\kappa(p+1) = \psi(p+1) - \binom{q}{2} \binom{p+q-2}{p-1}$$
 for $p > 2$;

(IV)
$$\kappa(p+2) = \psi(p+2) - 3p + 1$$
 for $p > 3$ and $q = 2$.

2. The Magnus series and Fox derivatives. In this section we summarize, without proof, those known results that will be needed later.

Magnus has defined an isomorphic representation of a free group by power series. Let F be the free group on generators x_1, \dots, x_q . Let Ω be the ring of all formal power series, with integer coefficients, in q noncommuting indeterminates denoted by $\Delta x_1, \dots, \Delta x_q$. The Magnus representation $w \to 1 + \Delta w$

Presented to the Society, April 25, 1953; received by the editors May 18, 1953.

⁽¹⁾ For a general discussion of Burnside's problem, see Baer [1]. In addition to the papers mentioned in [1] we note a more recent paper of Magnus [10] that is in part parallel to the present investigation, and a paper of J. A. Green [5] in which he anticipates certain ideas of the present paper and establishes a remarkable theorem that supersedes similar results of ours.

⁽²⁾ For the Fox calculus, see Fox [4]; for its application to the lower central quotients, see Chen-Fox-Lyndon [3]. The results cited in §2 are to be found in these papers and in the fundamental papers [9; 10] of Magnus and [11] of Witt. See also Hall [6]. Added in proof: These results are extended in a sequel to the present paper, to appear in Trans. Amer. Math. Soc.

⁽³⁾ Hall, 1949, unpublished. Results I, II, III (at least for q=2), IV below. I am grateful for the opportunity to check my results against his (and to correct an error in my preliminary computation of $\kappa(p+2)$).

may be characterized as the unique multiplicative extension, F into Ω , of the correspondence $x_k \rightarrow 1 + \Delta x_k$.

We write $w\to 1+\Delta w=1+\omega_1+\omega_2+\cdots$ where ω_n is the sum of all terms of total degree n in the Δx_k . It is known that $\omega_1=\omega_2=\cdots=\omega_{n-1}=0$ if and only if w lies in the lower central group F_n . In this case ω_n is a Lie element in the Δx_k , of degree n, and it is known that the correspondence $w\to\omega_n$ defines an isomorphism of the abelian quotient F_n/F_{n+1} onto the module of all Lie elements of degree n contained in Ω . If $p\zeta$ is a Lie element, where p is an integer, then ζ is a Lie element.

The coefficients in the Magnus series are given by the Fox calculus. Let Γ be the group ring of F, with integer coefficients. For each generator x_k define $\partial/\partial x_k$ from F into Γ by the conditions

$$\frac{\partial x_i}{\partial x_k} = \delta_{ik}, \qquad \frac{\partial (uv)}{\partial x_k} = \frac{\partial u}{\partial x_k} + u \frac{\partial v}{\partial x_k}.$$

By extending $\partial/\partial x_k$ linearly to a derivation from Γ into Γ , one defines the iterated derivatives $\partial^n/\partial x_{c_1} \cdots \partial x_{c_n}$. The coefficient sum $D_{c_1...c_n}(w)$ of $\partial^n w/\partial x_{c_1} \cdots \partial x_{c_n}$ is then the coefficient of $\Delta x_{c_1} \cdots \Delta x_{c_n}$ in Δw :

$$\Delta w = \sum D_c(w) \cdot \Delta x_{c_1} \cdot \cdot \cdot \Delta x_{c_n},$$

summed over all nonempty finite sequences $c = c_1 \cdot \cdot \cdot c_n$ of integers $c_k = 1, 2, \dots, q$.

Let C_n be the set of all sequences c of length n, and define S_n to be the subset of those "standard" c that have the property of preceding lexicographically all of their own proper terminal segments $c_k c_{k+1} \cdot \cdot \cdot \cdot c_n$, $1 < k \le n$. The operators D_c for c in C_n define homomorphisms of F_n/F_{n+1} into the additive group C of integers, and the C_n for C_n form a basis for the group of all homomorphisms of C_n/F_{n+1} into C_n/F_n into C_n/F_n are homogeneous in the sense that C_n/F_n for C_n/F_n into C_n/F_n unless for each C_n/F_n the degree of C_n/F_n (as a commutator form) in C_n/F_n is equal to the number of occurrences of the symbol C_n/F_n in the sequence C_n/F_n

The operators D_c , applied to the general element of F, are not independent, but are subject to certain "shuffle relations." Define a shuffle of two sequences a and b to be a pair of order-preserving one-to-one mappings embedding them as subsequences in a new sequence c; we require that c be precisely the union of the two subsequences, but not that they be disjoint. In these terms one has, for all w in F, the relations

$$D_a(w)\cdot D_b(w) = \sum D_c(w),$$

summed over all shuffles of a and b. All relations involving only a finite number of the operators D_c are consequences of these. In particular, by means of these relations it is possible to express the general operator D_c as a polynomial with rational coefficients in the D_c for c in S_n .

3. **Preliminary constructions.** B = F/R, where F is free on q generators, and R is generated by all pth powers of elements from F. Then $Q_n = B_n/B_{n+1}$ is a quotient group of F_n/F_{n+1} . Let V_n be the quotient of F_n/F_{n+1} by the pth powers of its own elements. Since F_n/F_{n+1} is free abelian of rank $\psi(n)$, V_n may be taken, in additive notation, as a vector space of dimension $\psi(n)$ over the field of integers modulo p. Since Q_n is abelian of exponent p, it may be identified with a quotient space of V_n :

$$Q_n = V_n/M_n.$$

The dimension of Q_n is $\kappa(n) = \psi(n) - \mu(n)$, where $\mu(n)$ is the dimension of M_n . Given a set of elements r whose cosets span $F_n \cap R/F_{n+1} \cap R$, and a set of elements c of C_n that includes the set S_n , the matrix $\mathcal{M}_n = [D_o(r)]$, with elements taken modulo p, is a relation matrix for $Q_n = V_n/M_n$. Hence $\mu(n)$

is the rank of \mathcal{M}_n .

We are thus led to consider the Magnus series $1+\Delta w$ for $w=\prod u_t^p$ in R, and the behavior of its coefficients reduced modulo p. From the equation

$$1 + \Delta(u_1 \cdot \cdot \cdot u_m) = (1 + \Delta u_1) \cdot \cdot \cdot (1 + \Delta u_m),$$

for elements u_1, \dots, u_m in F, one has the "Leibniz rule"

Proposition 3.1.

$$D_c(u_1 \cdot \cdot \cdot u_m) = \sum D_{o^1}(u_1) \cdot \cdot \cdot D_{o^m}(u_m),$$

summation over all "partitions" of the sequence $c = c_1 \cdots c_n$ into m segments $c^k : c = c^1 \cdots c^m$. In this context only we admit the possibility of empty sequences c^k , with the understanding that $D_{c^k}(u_k) = 1$.

Let the terms in (3.1) be grouped according to the number r of non-empty segments in the corresponding partition of c. Setting all $u_k = u$ and collecting identical terms then gives

Proposition 3.2. If $c = c_1 \cdot \cdot \cdot c_n$ is of length n, then

$$D_c(u^m) = \sum_{1 \le r \le m, n} {m \choose r} \sum D_{c^1}(u) \cdot \cdot \cdot D_{c^r}(u),$$

with summation now confined to partitions of c into nonempty parts: $c = c^1 \cdot \cdot \cdot c^r$.

PROPOSITION 3.3. If c is of length n, and p is a prime, then

$$(3.31) D_c(u^p) \equiv 0 \pmod{p} for n < p;$$

$$(3.32) D_c(u^p) \equiv \sum_{\sigma=c^1\cdots c^p} \prod_{1\leq k\leq p} D_{c^k}(u) \pmod{p} for n \geq p.$$

COROLLARIES 3.4. For c of length n and p prime:

(3.41) If u is in F_m and pm > n, then

$$D_{c}(u^{p})\equiv 0.$$

(3.42) If $u \equiv v \pmod{F_{n-p+2}}$, then

$$D_c(u^p) \equiv D_c(v^p).$$

(3.43) If n < 2p, then

$$D_c(u^p v^p) \equiv D_c(u^p) + D_c(v^p).$$

To prove (3.41), note that if pm > n then every partition of c into p (non-empty) parts must contain some part c^k of length less than m; hence every term in (3.32) contains a factor $D_c^k(u) = 0$. To prove (3.42), note that in every partition of c into p (nonempty) parts, all parts must be of length less than n-p+2; hence each $D_c^k(u) = D_c^k(v)$. To prove (3.43), apply (3.1) to $D_c(u^pv^p)$ with m=2, and observe that by (3.31) every term containing a factor for c^k nonempty and of length less than p must vanish; hence only those terms corresponding to $c = c^1c^2$ with one part empty and the other equal to c remain.

If, in $\Delta w = \omega_1 + \omega_2 + \cdots$, all $\omega_k = 0$ for k < n, then w lies in F_n . What does it signify if all $\omega_k \equiv 0$ for k < n?

PROPOSITION 3.5. For w in F_h , and $h \leq k$, suppose that

$$\Delta w \equiv \omega_k + \omega_{k+1} + \cdots$$

then, provided that $2 \le h \le k < 2p$, there exists w' = wr in F_k , where r is in R, such that

$$\Delta w' = \omega_k' + \omega_{k+1}' + \cdots,$$

with $\omega_k' \equiv \omega_k, \cdots, \omega_{2p-1}' \equiv \omega_{2p-1}$.

The case h=k is trivial, while the general case follows by iteration of the case k=h+1. Since w is in F_h , ω_h is a Lie element; and $\omega_h\equiv 0$ implies that $\omega_h=-p\zeta$ where ζ is again a Lie element of degree h. Then ζ is the leading term of Δz for some z in F_h . Taking $r=z^p$, w'=wr is in F_{h+1} , with $\omega_h'=0$. And since, by (3.41), $D_c(r)\equiv 0$ for c of length n<2p, $\Delta r\equiv \rho_{2p}+\rho_{2p+1}+\cdots$ and $\omega_n'\equiv \omega_n$ for n<2p.

(Remark: The same argument can be applied in the general situation $a \le h \le k \le ap$.)

A special application of the above is to the case of $w = (uv)^p u^{-p} v^{-p}$, for u in F and v in F_h , $h \leq p$. Clearly w lies in $F_{h+1} \subset F_2$. By (3.43), $D_c(w) \equiv D_c((uv)^p) - D_c(u^p) - D_c(v^p)$ for n < 2p, hence for n < h + p. By (3.42), since $uv \equiv u$, $v \equiv 1 \pmod{F_h}$, $D_c((uv)^p) \equiv D_c(u^p)$ and $D_c(v^p) \equiv 0$ for $h \geq n - p + 2$, hence for n < h + p - 1. Therefore $D_c(w) \equiv 0$ for n < h + p - 1, and $\Delta w \equiv \omega_{h+p-1} + \omega_{h+p} + \cdots$. Applying now (3.5) and noting that w in R implies w' = wr is in R, one has

PROPOSITION 3.6. Let $w = (uv)^p u^{-p} v^{-p}$ where u is in F and v in F_h , $h \leq p$. Then $\Delta w \equiv \omega_{h+p-1} + \omega_{h+p} + \cdots$ and there exists w' in R such that $\Delta w' = \omega'_{h+p-1} + \omega'_{h+p} + \cdots$ where $\omega'_{h+p-1} \equiv \omega_{h+p-1}$.

4. The quotient Q_n for n < p. The dimension $\mu(n)$ of M_n is the rank of the matrix $\mathcal{M}_n = [D_c(r)]$ with columns indexed by c in C_n , rows by r in $F_n \cap R$, and elements taken modulo p. Define $\mathcal{N}_n = [D_c(r)]$ in the same way, but with rows for all $r = u^p$ in R. Every r in R can be written as $r = \prod u_t^{p\lambda_t}$, whence by (3.43), provided n < 2p, $D_c(r) \equiv \sum \lambda_t D_c(u_t^p)$. It follows that the rows of \mathcal{M}_n are certain linear combinations of the rows of \mathcal{N}_n .

For n < p, all $D_o(u_t^p) \equiv 0$ by (3.31), whence \mathcal{N}_n , and so \mathcal{M}_n , is a 0-matrix. Thus

THEOREM I. $\mu(n) = 0$ for n < p.

5. The quotient Q_p . If c is of length p, it follows by (3.42) that $D_c(u^p)$, modulo p, depends upon u only modulo F_2 , hence only upon the $D_k(u) = \alpha_k$ modulo p, for $k = 1, 2, \cdots, q$. Therefore we may write $[u] = [\alpha_1, \cdots, \alpha_q]$ for the row of \mathcal{N}_p with elements $D_c(u^p)$.

LEMMA 5.1. The linear combination $L = \sum \lambda_t [u(t)] = \sum \lambda_t [\alpha(t)_1, \cdots, \alpha(t)_q]$ belongs to the row space of \mathcal{M}_p if and only if

(5.1)
$$\sum \lambda_i \alpha(t)_k \equiv 0 \qquad \text{for } k = 1, 2, \dots, q.$$

To prove this, first remark that L belongs to (the row space of) \mathcal{M}_p if and only if there exists some $r = \prod u(t)^{p\lambda_t}$ (order of factors immaterial) in $R \cap F_p$ for which $[u(t)] = [\alpha(t)_1, \dots, \alpha(t)_q]$. If such r exists, a fortiori

$$r \equiv \prod_{t} \prod_{k} x_{k}^{\alpha(t)_{k}p\lambda_{t}} \equiv \left[\prod_{k} x_{k}^{\sum_{t} \alpha(t)_{k}}\right]^{p} \equiv 1 \pmod{F_{2}},$$

and, since F/F_2 is torsion-free, $\sum \lambda_t \alpha(t)_k = 0$ for all k. For the converse, any given solution of (5.1) modulo p corresponds to a solution of the equations $\sum \lambda_t \alpha(t)_k = 0$ in rational integers. Set $u(t) = \prod x_k^{\alpha(t)_k}$ and $w = \prod u(t)^{p\lambda_t}$. Then the $D_c(w)$ for c in C_p yield the entries in the row L. But w is in $R \cap F_2$, whence, by (3.43) and (3.41), $\Delta w \equiv \omega_p + \omega_{p+1} + \cdots$. By (3.5) there exists w' in $R \cap F_p$ with $\Delta w' = \omega_p' + \omega_{p+1}' + \cdots$ where $\omega_p' \equiv \omega_p$. Thus $D_c(w') \equiv D_c(w)$, and L is the row of \mathcal{M}_p indexed by w' in $R \cap F_p$.

Next consider the columns of \mathcal{N}_p . For $c = c_1 \cdots c_p$ of length p, (3.32) yields $D_c(u^p) \equiv D_{c_1}(u) \cdots D_{c_p}(u) = \alpha_1^{h_1} \cdots \alpha_q^{h_q}$ where h_1, \dots, h_q are the frequencies of the symbols $1, \dots, q$ in the sequence c. Write $\phi_c(u) = \alpha_1^{h_1} \cdots \alpha_q^{h_q}$, and, for $L = \sum \lambda_t [u(t)]$, write $\phi_c(L) = \sum \lambda_t \phi_c(u(t))$. The column space of \mathcal{N}_p , hence of \mathcal{M}_p , is thus spanned by columns given by the ϕ_c for all distinct $(h) = (h_1, \dots, h_q)$ belonging to some c in S_p . Now S_p contains none of the q sequences consisting of p repetitions of the same symbol; while for any other solution of the conditions $\sum h_k = p$, $0 \le h_k \le p$, the sequence c

obtained by arranging the prescribed number of symbols $1, \dots, q$ in non-descending order belongs to S_p . The number of distinct ϕ_c is therefore

$$\binom{p+q-1}{p}-q.$$

That the ϕ_c , clearly independent over \mathcal{N}_p , are independent over \mathcal{M}_p follows from homogeneity considerations (§6). Or, directly, if any combination $\sum \nu_c \phi_c$ vanished on all the rows

$$[\alpha_1, \dots, \alpha_k + 1, \dots, \alpha_q] - [\alpha_1, \dots, \alpha_k, \dots, \alpha_q] - [0, \dots, 1, \dots, 0]$$

of \mathcal{M}_p , it would have to be independent of $\alpha_1, \dots, \alpha_q$, whence all the $\nu_c \equiv 0$.

THEOREM II.

$$\mu(p) = \binom{p+q-1}{p} - q.$$

REMARK. For p=2, this gives $\kappa(2)=\psi(2)-\mu(2)=0$, hence $Q_2=1$; in fact, $B_2=1$ ⁽⁴⁾. Since it follows that, for p=2, $Q_n=1$ for all $n\geq 2$, we may henceforth assume that p>2.

6. Homogeneity of M_n . The elements of V_n , regarded as commutator forms in F_n/F_{n+1} reduced modulo p (or as Lie elements), have well-defined degrees in each of the generators x_1, \dots, x_q . For each solution $(h) = (h_1, \dots, h_q)$ of $\sum h_k = n$, $0 \le h_k < n$, define V(h) to be the subspace of all elements that are homogeneous of degree h_k in x_k for each $k = 1, \dots, q$. Clearly V is the direct sum of the V(h).

Define $M(h) = M_n \cap V(h)$.

LEMMA 6.1. For n = p, for n = p + 1, and for p = 2 and n = p + 2, M_n is the direct sum of its subspaces M(h).

The case n=p is in fact implicit in the proof of Theorem II, but also falls out of a more general argument. If $L(x_1, \cdots, x_q)$ is a homogeneous form in V(h), then "linear" substitution gives $L(x_1^{e_1}, \cdots, x_q^{e_q}) \equiv e_1^{h_1} \cdots e_q^{h_q} \cdot L(x_1, \cdots, x_q)$. Since R is a characteristic ("word") subgroup of F, the subspace M_n is closed in V_n under substitution. It follows by standard reasoning that M_n has a basis of forms with the property that one of them will contain terms in different V(h) and V(h') only if $e_1^{h_1} \cdots e_q^{h_q} \equiv e_1^{h'_1} \cdots e_q^{h'_q}$ (mod p) for all e_1, \cdots, e_q . This requires that $h_k = 0$ if and only if $h_k' = 0$, and that, for each k, $h_k \equiv h_k'$ (mod p-1).

If n = p, there exist no distinct (h) and (h') so related, whence M_n has a basis of elements lying in the various M(h), and therefore is a direct sum.

For n=p+1, the pairs of (h) and (h') of this sort are all of the type

⁽⁴⁾ Elementary; see Burnside [2].

 $(h)=(1,\ p,\ 0,\ \cdots,\ 0),\ (h')=(p,\ 1,\ 0,\ \cdots,\ 0).$ For n=p+2, provided q=2, they are of type $(h)=(1,\ p+1)$ and $(h')=(p,\ 2).$ Now, for $(h)=(1,\ n-1,0,\ \cdots,\ 0),\ S(h)$ contains only $c=122\ \cdots 2$, and V(h) is of dimension 1, with basis element $\xi_n=(x_1,\ x_2,\ \cdots,\ x_2)\ (n-1\ \text{symbols}\ x_2).$ The proof of Theorem II shows that, for $n=p,\ M(h)$ has dimension 1, hence M(h)=V(h), and ξ_p lies in $R\cap F_{p+1}.$ Since $\xi_{n+1}=(\xi_n,\ x_2)$, it follows inductively that ξ_n lies in $R\cap F_{n+1}$ for all $n\geq p$, that M(h) has dimension 1, hence that M(h)=V(h). In particular, this gives $M(1,\ p,\ 0,\ \cdots,\ 0)=V(1,\ p,\ 0,\ \cdots,\ 0)$ and $M(1,\ p+1)=V(1,\ p+1),$ whence $M_n\cap (V(h)+V(h'))=M(h)+M(h'),$ direct sum, in the two cases under consideration.

For each (h), let C(h) consist of all sequences c in C that contain exactly h_k symbols k, for $k=1, \dots, q$; and define $S(h)=S\cap C(h)$. Let $\mathcal{N}(h)$, $\mathcal{M}(h)$ be the submatrices of \mathcal{N}_n , \mathcal{M}_n consisting of those columns indexed by c in C(h), and let $\mu(h)$ be the rank of $\mathcal{M}(h)$. From the homogeneity of the operators D_c , as applied to F_n/F_{n+1} , one deduces

LEMMA 6.2. For n=p, for n=p+1, and for q=2 and n=p+2, one has $\mu(n) = \sum \mu(h)$.

7. The quotient Q_{p+1} . If c is of length p+1, it follows by (3.42) that $D_c(u^p)$, modulo p, depends upon u only modulo F_3 , and hence only upon the numbers, taken modulo p, $D_k(u) = \alpha_k$ and $D_{ij}(u) = \gamma_{ij}$ for $1 \le i < j \le q$. Therefore we write $[u] = [\alpha_1, \dots, \alpha_q; \gamma_{12}, \dots, \gamma_{q-1,q}]$ for the row of \mathcal{N}_{p+1} whose entries are $D_c(u^p)$.

LEMMA 7.1. The linear combination $L = \sum \lambda_t u(t)$ belongs to the row space of \mathcal{M}_{p+1} if and only if $\eta(L) \equiv 0$ for every form $\eta(\alpha_1, \dots, \alpha_q)$ homogeneous of total degree p in the α_k .

If L corresponds to some $r = \prod u(t)^{p\lambda_t}$ in $R \cap F_{p+1}$, then, since r is in $R \cap F_p$, all $\sum \lambda_t \alpha(t)_k \equiv 0$ by (5.1). Since, in fact, r is in F_{p+1} , all $D_c(r) = 0$ for c in C_p , whence $D_c(r) \equiv \sum \lambda_t \alpha(t)_1^{h_1} \cdots \alpha(t)_q^{h_q} \equiv 0$ for all solutions of $\sum h_k = p$, $0 \leq h_k < p$. In the excluded cases, where some $h_k = p$, with the remaining $h_i = 0$, one has $\sum \lambda_t \alpha(t)_k^p \equiv \sum \lambda_t \alpha(t)_k \equiv 0$. Hence $\eta(L) \equiv 0$ for all η .

For the converse, given an L such that $\eta(L) \equiv 0$ for all η , proceeding in the same manner as for Lemma 5.1 we can use the given λ_t and $\alpha(t)_k$ to construct an element $r = \prod u(t)^{p\lambda_t}$ in $R \cap F_{p+1}$ giving rise to a row L' in \mathcal{M}_{p+1} with the same numbers $\alpha(t)_k$ as L. Since this construction provides no control over the γ_{ij} , to prove that L belongs to \mathcal{M}_{p+1} we must show that \mathcal{M}_{p+1} contains all rows of the form

$$K = [\alpha_k; \gamma_{ij}] - [\alpha_k; \gamma'_{ij}].$$

For this, let $\gamma'_{ij} = \gamma_{ij} + \gamma''_{ij}$ and choose u and v such that $[u] = [\alpha_k; \gamma_{ij}]$ and $[v] = [0; \gamma''_{ij}]$: more precisely, $v = \prod_{i < j} (x_i, x_j)^{\gamma_{ij}}$. Then u is in F and v

in F_2 , whence, taking $w = (uv)^p u^{-p} v^{-p}$, by (3.6) with h = 2 there exists w' in $R \cap F_{p+1}$ such that $D_c(w') \equiv D_c(w)$ for all c in C_{p+1} . Thus w' gives rise to a row $\lfloor uv \rfloor - \lfloor u \rfloor - \lfloor v \rfloor$ in \mathcal{M}_{p+1} . Since v is in F_2 , $D_c(v^p) \equiv 0$ for all c in C_{p+1} , by (3.41), and $\lfloor v \rfloor = 0$. Therefore $\lfloor uv \rfloor - \lfloor u \rfloor = \lfloor \alpha_k; \gamma'_{ij} \rfloor - \lfloor \alpha_k; \gamma_{ij} \rfloor$ and K belongs to \mathcal{M}_{p+1} , as required.

Next we shall examine the columns of $\mathcal{N}(h)$ and $\mathcal{M}(h)$, for fixed (h). For $c = c_1 \cdot \cdot \cdot \cdot c_{p+1}$, (3.32) gives

$$D_{c}(u^{p}) \equiv \sum_{k=1}^{p} D_{c_{1}}(u) \cdot \cdot \cdot D_{c_{k-1}}(u) D_{c_{k}c_{k+1}}(u) D_{c_{k+2}}(u) \cdot \cdot \cdot D_{c_{p+1}}(u)$$

$$\equiv A \sum_{k=1}^{p} D_{c_{k}c_{k+1}}(u) / \alpha_{c_{k}} \alpha_{c_{k+1}}$$

where $A = \alpha_1^{h_1} \cdot \cdot \cdot \cdot \alpha_q^{h_q}$. For i < j, we defined $\gamma_{ij} = D_{ij}(u)$. The shuffle relations $D_i \cdot D_j = D_{ij} + D_{ji}$ $(i \neq j)$ and $D_i \cdot D_i = D_{ii} + D_{ii}$ give

$$D_{ii} = \alpha_i \alpha_i - \gamma_{ij}, \qquad D_{ii} = \alpha_i^2/2 - \alpha_i/2.$$

For greater symmetry, define, for i < j,

$$\theta_{ij} = \frac{\gamma_{ij}}{\alpha_i \alpha_i} - \frac{1}{2}, \qquad \theta_{ji} = -\theta_{ij}, \qquad \theta_{ii} = 0.$$

Then, for i < j,

$$D_{ij}(u) = \gamma_{ij} = \alpha_i \alpha_j \theta_{ij} + \alpha_i \alpha_j / 2,$$

$$D_{ji}(u) = \alpha_i \alpha_j - \gamma_{ij} = -\alpha_i \alpha_j \theta_{ij} + \alpha_i \alpha_j / 2 = \alpha_j \alpha_i \theta_{ji} + \alpha_j \alpha_i / 2,$$

$$D_{ij}(u) = \alpha_i / 2 - \alpha_i / 2 = \alpha_i \alpha_i \theta_{ii} + \alpha_i \alpha_i / 2 - \alpha_i / 2.$$

In this notation,

$$D_c(u^p) \equiv A \sum_{1 \leq k \leq p} \left(\theta_{\sigma_k \sigma_{k+1}} + \frac{1}{2} \right) + \eta(\alpha_1, \cdots, \alpha_q)$$

where η is a form of total degree p in the α_k , and by (7.1) may be neglected in investigating the columns of \mathcal{M}_{p+1} . If, for $1 \le i, j \le q$, we let h_{ij} be the number of consecutive pairs $c_k c_{k+1} = ij$ in the sequence c, the entries in the column indexed with c are given by

$$\phi_c(\alpha_k; \gamma_{ij}) \equiv A \sum_{i,j} h_{ij}\theta_{ij} + \frac{1}{2} pA$$

$$\equiv A \sum_{i,j} h_{ij}\theta_{ij}.$$

To find a basis for these columns, first observe that if $h_i \neq 0$, $h_j \neq 0$, then C(h) will contain, for some k, c_2 , \cdots , c_{p-1} , sequences $c = kc_2 \cdots c_{p-1}ij$ and $c' = jkc_2 \cdots c_{p-1}i$. Comparing the h_{st} and h'_{st} gives

$$\psi_{ijk} = \phi_c - \phi_{c'} \equiv A(\theta_{ij} - \theta_{jk}).$$

Using $\theta_{jk} = -\theta_{kj}$, and choosing k' from the c_2, \dots, c_{p-1} ,

$$\psi_{ij} = \psi_{ijk} + \psi_{ijk'} - \psi_{kjk'}$$

$$\equiv A(\theta_{ij} - \theta_{jk} + \theta_{ij} - \theta_{jk'} - \theta_{kj} + \theta_{jk'})$$

$$\equiv 2A\theta_{ij}.$$

From this it follows that the columns given by the ψ_{ij} , for i < j, span the column space of $\mathcal{N}(h)$ and so that of $\mathcal{M}(h)$. We shall show that the ψ_{ij} give independent columns of $\mathcal{M}(h)$. For s < t, choose u_{st} with all $\alpha_k = 1$, and with all $\gamma_{ij} = 0$ except $\gamma_{st} = 1$. Choose u_0 with all $\alpha_k = 1$ and all $\gamma_{ij} = 0$. Evidently $L_{st} = [u_{st}] - [u_0]$ belongs to the row space of \mathcal{M}_{p+1} , by Lemma 7.1. But $\psi_{st}(L_{st}) = +1$, while all other $\psi_{ij}(L_{st}) = -1$.

It follows that the rank of \mathcal{M}_{p+1} , $\mu(p+1) = \sum \mu(h)$, is the sum, over all (h), of the number of pairs i < j for which $h_i \neq 0$, $h_j \neq 0$. Evidently, this is the sum over all i < j, of the number of (h) with $h_i \neq 0$, $h_j \neq 0$, which is evidently

$$\binom{q}{2}\binom{p+q-2}{p-1}$$
.

THEOREM III.

$$\mu(p+1) = \binom{q}{2} \binom{p+q-2}{p-1}$$

for p > 2.

REMARK. For p=3, this gives $\kappa(4) = \psi(4) - \mu(4) = 0$, hence $Q_4=1$; in fact, $B_4=1(5)$. Since it follows that, for p=3, all $Q_n=1$, $n \ge 4$, we henceforth assume p>3.

8. The quotient Q_{p+2} for q=2. It is assumed henceforth that B is defined by two generators x_1 , x_2 , and that $p \ge 5$. To avoid subscripts, we introduce the alternate notation $x=x_1$, $y=x_2$, $\alpha=\alpha_1=D_1(u)$, $\beta=\alpha_2=D_2(u)$, $\gamma=\gamma_{12}=D_{12}(u)$. If c is of length p+2, it follows by (3.42) that $D_c(u^p)$ modulo p depends upon u only through the numbers α , β , γ and $\sigma=D_{112}(u)$, $\tau=D_{122}(u)$. We write $[u]=[\alpha,\beta,\gamma,\sigma,\tau]$ for the row of N_{p+2} given by the $D_c(u^p)$.

LEMMA 8.1. The combination $L = \sum \lambda_t[u_t]$ belongs to the row space of \mathcal{M}_{p+2} if and only if

(8.1)
$$\eta(L) \equiv 0 \text{ for all forms } \eta(\alpha, \beta) \text{ of total degree } p$$
,

(8.2)
$$\sum \lambda_t \alpha_t^h \beta_t^k \equiv 2 \sum \lambda_t \alpha_t^{h-1} \beta_t^{k-1} \gamma_t$$

for all $1 \leq h \leq p$, k = p+1-h.

⁽⁵⁾ See Burnside [2], Levi-van der Waerden [7].

Observing that, for q=2, the columns of \mathcal{M}_{p+1} are all given by polynomials

$$\psi_{12} = 2A\theta_{12} = 2\alpha^h \beta^k \left(\frac{\gamma}{\alpha\beta} - \frac{1}{2}\right),\,$$

the proof runs exactly parallel to that of Lemma 7.1.

Next we shall examine the columns of $\mathcal{N}(h)$ and $\mathcal{M}(h)$, for a fixed (h) = (h, k), 0 < h < p+2, k = p+2-h. For the right member of (3.32), the partitions of $c = c_1 \cdot \cdot \cdot c_{p+2}$ into p parts are clearly of two kinds:

- (i) one segment $c_i c_{i+1} c_{i+2}$, the rest c_j ;
- (ii) two segments $c_i c_{i+1}$ and $c_j c_{j+1}$, the rest c_r . According as the c_i , c_j , etc., are 1 or 2, we classify these partitions in the obvious fashion into types

$$111, \dots, 222, 11/11, \dots, 22/22.$$

Define the integers (111), \cdots , (22/22) to be the number of partitions of c falling into each of these types. Then, by (3.32),

$$D_c(u^p) \equiv A \sum_i (ijk) D_{ijk}(u) / \alpha_i \alpha_j \alpha_k$$
$$+ A \sum_i (ij/rs) D_{ij}(u) D_{rs}(u) / \alpha_i \alpha_j \alpha_r \alpha_s$$

with summation over all distinct partition types.

By means of the shuffle relations, the $D_{ijk}(u)$ and $D_{ij}(u)D_{rs}(u)$ are all expressible as polynomials in the α , β , γ , σ , τ . For example, from the shuffle relation $D_{12} \cdot D_1 = D_{121} + D_{112} + D_{112} + D_{112}$ we find that

(8.3)
$$\frac{D_{121}(u)}{\alpha^2 \beta} = -2 \frac{\sigma}{\alpha^2 \beta} + 1 \frac{\gamma}{\alpha \beta} - 1 \frac{\gamma}{\alpha^2 \beta}.$$

Without entering into further details at this point, it follows that the $D_c(u^p)$ will all be given by polynomials, with certain coefficients K_{σ} , \cdots , H'_{β} depending on c, of the general form

$$A\left\{K_{\sigma}\frac{\sigma}{\alpha^{2}\beta}+K_{\tau}\frac{\tau}{\alpha\beta^{2}}+K_{\gamma\gamma}\frac{\gamma^{2}}{\alpha^{2}\beta^{2}}+K_{\gamma}\frac{\gamma}{\alpha\beta}+K_{1}\right.\\\left.+H_{\alpha}\frac{\gamma}{\alpha^{2}\beta}+H_{\beta}\frac{\gamma}{\alpha\beta^{2}}+H_{\alpha}'\frac{1}{\alpha}+H_{\beta}'\frac{1}{\beta}\right\}+\eta(\alpha,\beta),$$

where η is a form of total degree p and may be ignored. Further, if $L = \sum \lambda_t [u_t]$ belongs to \mathcal{M}_{p+2} , then by (8.1), since (h-1)+k=p+1, we have

$$\sum \lambda_t (H_{\alpha} \alpha_t^{h-2} \beta_t^{k-1} \gamma_t + H_{\alpha}' \alpha_t^{h-1} \beta_t^k) \equiv \sum \lambda_t (H_{\alpha} + 2H_{\alpha}') \alpha_t^{h-2} \beta_t^{k-1} \gamma_t,$$

and it follows that, for the purpose of investigating \mathcal{M}_{p+2} , we may describe $D_c(u^p)$ by the polynomial

(8.4)
$$\phi_{\sigma} = A \left\{ K_{\sigma} \frac{\sigma}{\alpha^{2}\beta} + K_{\tau} \frac{\tau}{\alpha\beta^{2}} + K_{\gamma\gamma} \frac{\gamma^{2}}{\alpha^{2}\beta^{2}} + K_{\gamma} \frac{\gamma}{\alpha\beta} + K_{\beta} \frac{\gamma}{\alpha\beta^{2}} + K_{\beta} \frac{\gamma}{\alpha\beta^{2}} \right\},$$

where $K_{\alpha} = H_{\alpha} + 2H_{\alpha}'$ and $K_{\beta} = H_{\beta} + 2H_{\beta}'$.

Although we shall have later to prove only a small part of this fact, it may be noted that routine calculation shows that the monomials $A\sigma/\alpha^2\beta$, \cdots , $A\gamma/\alpha\beta^2$ define linearly independent functions over the row space of \mathcal{M}_{p+2} .

9. Continuation. We next examine how the coefficients K in (8.4) depend upon the numbers (111), \cdots , (22/22). From equation (8.3), for example, it appears that each partition of c of the type 121 contributes -2 to K_{σ} , +1 to K_{γ} , -1 to H_{α} (and thus to K_{α}), and nothing to the remaining coefficients. We tabulate the result of analogous computations for the other types of partitions in Table 1.

	Table 1										
	K_{σ}	$K_{ au}$	$K_{\gamma\gamma}$	K_{γ}	K_1	$H_{\boldsymbol{lpha}}$	H_{α}^{\prime}	$H_{m{eta}}$	$H_{m{eta}}'$	K_{α}	K_{β}
(111) (222)					1/6 1/6		-1/2		-1/2	-1	_1
(112)	1				1/0				-1/2		-1
(121)	-2			1		-1				-1	
(211)	1			-1	1/2	1	-1/2				
(122)		1									
(212)		- 2		1	1 /2			-1 1	1 /2		-1
(221)		1		-1	$\frac{1}{2}$ $\frac{1}{4}$		1 /2	1	-1/2	1	
(11/11) $(11/22)$					$\frac{1}{4}$		-1/2 - 1/4		-1/2 $-1/4$ $-1/2$	-1/2	_1/2
(22/22)					1/4		-1/4		-1/4	-1/2	-1/2
(11/12)				1/2	1/1	-1/2			1,2	-1/2	•
(11/21)				-1/2	1/2	1/2	-1/2			$-1/2 \\ -1/2$	
(22/12)				1/2	•	'	,	-1/2		·	-1/2
(22/21)	}			-1/2	1/2			1/2	-1/2		-1/2
(12/12)			1								
(12/21)			-1	1							
(21/21)			1	-2	1						
	K_{σ}	K_{τ}	$K_{\gamma\gamma}$	K_{γ}	K_1	H_{α}	H_{α}'	$H_{m{eta}}$	$H_{m{eta}}'$	K_{α}	$K_{m{eta}}$

The question now arises of what values of the partition numbers (111), \cdots , (22/22) correspond to elements c in S(h). Since these numbers are not independent, we first express them in terms of independent parameters. Every sequence c in S(h) contains h symbols 1 and p+2-h symbols 2; moreover, c must begin with a 1 and end with a 2. We define

d=0 or 1 according as c begins with 11 or with 12, e=0 or 1 according as c ends with 22 or with 12, a = the number of couples $c_ic_{i+1}=12$ in c.

Then all the partition numbers for c are expressible in terms of d, e, a, b = (112), and f = (122). The specific equations are listed in Table 2. We illustrate the method by evaluating (11/21). First, (11/21) = (11)(21) - (211), the number of pairs of segments 11 and 21, minus the number that overlap. Since every 1 begins a pair, h = (11) + (12), and (11) = h - a. Since c begins with a 1 and ends with a 2, (12) = (21) + 1, and (21) = a - 1. Finally, (11) is equal to the number of triples 111 or 112, and also is equal to the number of triples 111 or 211, plus 1 if d = 0; hence (111) + (112) = (111) + (211) + (1-d), and (211) = (112) + d - 1 = b + d - 1. Combining these gives (11/21) = (h-a)(a-1) - (b+d-1).

TABLE 2. (All entries modulo p.)

```
(111) = h - a - b
  (222) = 2 - h - a - f
  (112) = b
                                                                                      (122) = f
  (121) = a - f - e
                                                                                      (212) = a - b - d
  (211) = b - d - 1
                                                                                      (221) = f + e - 1
(11/11) = \frac{1}{2} [(h-a)^2 - (h-a)] - (h-a-b)
(22/22) = \frac{1}{2} \left[ (2-h-a)^2 - (2-h-a) \right] - (2-h-a-f)
(11/22) = (h-a)(2-h-a)
(11/12) = (h-a)a-b
                                                             (11/21) = (h-a)(a-1) - (b+d-1)
(22/12) = (2-h-a)a-f
                                                             (22/12) = (2-h-a)(a-1)-(f+e-1)
(12/12) = \frac{1}{2}(a^2 - a)
                                                             (21/21) = \frac{1}{2} [(a-1)^2 - (a-1)]
(12/21) = a(a-1) - (a-f-e) - (a-b-d)
```

The results listed in Tables 1 and 2 can now be combined to express the coefficients K in terms of the parameters h, d, e, a, b, c. Straightforward computation gives

$$K_{\sigma} = 2g + 2e + d - 1,$$

$$K_{\tau} = 2g + e + 2d - 1,$$

$$K_{\gamma\gamma} = -g - e - d + 1,$$

$$K_{\gamma} = -g - e/2 - d/2,$$

$$K_{1} = g/12 + 1/12,$$

$$K_{\alpha} = K_{\sigma}/2, \qquad K_{\beta} = K_{\tau}/2,$$

where g = -a + b + f.

We are now in a position to determine what polynomials ϕ_c correspond to columns in the matrix \mathcal{M}_{p+2} . For this purpose we may restrict attention to c in S(h). The cases (h) = (1, p+1) and (h) = (p+1, 1), where $\mu(h) = 1$, may be dismissed. Since $7 \leq p+2=h+k$, odd, by symmetry we may suppose that $h > k \geq 2$ and that $h \geq 4$. Then c must begin with 11, and we may henceforth suppose that d = 0,

First, let h>4, and k>2. Then S(h) contains the three sequences listed below, with g and e as shown:

$$c = 11 \cdots 122 \cdots 22$$

$$c' = 11 \cdots 122 \cdots 212$$

$$c'' = 11 \cdots 122 \cdots 2112$$

$$c'' = 11 \cdots 122 \cdots 2112$$

$$c'' = 2 1 \cdots 122 \cdots 2112$$

$$c'' = 2 1 \cdots 1 \cdots 122 \cdots 2112$$

If the corresponding polynomials are ϕ , ϕ' , ϕ'' , evidently $\phi_1 = \phi'' - \phi - \phi'$ has coefficients corresponding to setting g = e = d = 0 in (9.1); $\phi_2 = \phi - \phi_1$ to retaining only the coefficient of g in (9.1); and $\phi_3 = \phi' - \phi_1$ to retaining that of e. Explicitly, the first three coefficients of these polynomials are

If h=4, $k \ge 3$, and a similar argument applies with c'' replaced by

$$c'' = 1122 \cdot \cdot \cdot 21212 \qquad \left\{ \frac{3 \quad 1 \quad 1}{3 \quad 1 \quad 0} \middle| \frac{-1 \quad 1}{-2 \quad 1} \quad \text{(for } k > 3) \right.$$

If k = 2, then $k \ge 5$, and one uses

$$c = 11 \cdot \cdot \cdot 122$$
 $c' = 11 \cdot \cdot \cdot 1212$
 $c'' = 11 \cdot \cdot \cdot 12112$
 $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 2 & 2 & 0 \end{vmatrix} - \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix}$

In all cases, the same ϕ_1 , ϕ_2 , ϕ_3 define columns spanning $\mathcal{M}(h)$, and it remains to show that these columns are independent.

Define three rows $L = \sum \lambda_t [u_t] = \sum \lambda_t [\alpha_t, \beta_t, \gamma_t, \sigma_t, \tau_t]$ of \mathcal{N}_{p+2} as follows:

$$L_1 = [1, 1, 0, 1, 0] - [1, 1, 0, 0, 0],$$

$$L_2 = [1, 1, 0, 0, 1] - [1, 1, 0, 0, 0],$$

$$L_3 = [1, 1, 2, 0, 0] + [1, 1, 0, 0, 0] - 2[1, 1, 1, 0, 0].$$

It is easily seen, in accordance with Lemma 8.1, that these lie in the row space of \mathcal{M}_{p+2} . Applying ϕ_c , as given by (8.4), to L_1 , one sees that all terms not containing σ cancel, hence that $\phi_c(L_1) \sim K_\sigma$. Similarly, $\phi_c(L_2) \sim K_\tau$. To evaluate $\phi_c(L_3)$, define $\Omega_{\nu} = [1, 1, \nu, 0, 0] - \nu[1, 1, 1, 0, 0]$; then $\phi_c(\Omega_{\nu})$ contains only terms in γ :

$$\phi_c(\Omega_{\nu}) \sim \nu K_{\gamma} + \nu^2 K_{\gamma\gamma} + \nu H_{\alpha} + \nu H_{\beta}$$
.

Since $L_3 = \Omega_2 - 2\Omega_1$, in $\phi_c(L_3)$ those terms that are linear in ν cancel out, leaving

$$\phi_c(L_3) \sim 2^2 \cdot K_{\gamma\gamma} - 2 \cdot 1^2 \cdot K_{\gamma\gamma} = 2K_{\gamma\gamma}.$$

Applying ϕ_1 , ϕ_2 , ϕ_3 to L_1 , L_2 , L_3 yields essentially the matrix (9.2) as a submatrix of $\mathcal{M}(h)$; and since this matrix is clearly nonsingular, $\mu(h) = 3$.

Combining this result, for $h=2, \dots, p$, with the values $\mu(1, p+1) = \mu(p+1, 1) = 1$ gives $\mu(p+1) = 3(p-1) + 2 = 3p - 1$.

THEOREM IV. $\mu(p+2) = 3p-1$ for p > 3.

REFERENCES

- 1. R. Baer, The higher commutator subgroups of a group, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 143-160.
- 2. W. Burnside, On an unsettled question in the theory of discontinuous groups, Quart. J. Math. vol. 33 (1902) pp. 230-238.
- 3. K. T. Chen, R. H. Fox, and R. C. Lyndon, On the quotient groups of the lower central series (to appear).
- 4. R. H. Fox, Free differential calculus I, II, Ann. of Math. vol. 56 (1953) pp. 547-560; vol. 59 (1954) pp. 196-210.
- 5. J. A. Green, On groups with odd prime-power exponent, J. London Math. Soc. vol. 27 (1952) pp. 476-485.
- 6. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) vol. 36 (1934) pp. 29-95.
- 7. F. Levi and B. L. van der Waerden, Über eine besondere Klasse von Gruppen, Abh. Math. Sem. Hansischen Univ. vol. 9 (1932) pp. 154-158.
- 8. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. vol. 111 (1935) pp. 259-280.
- 9. ——, Über beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math. vol. 177 (1937) pp. 105-115.
- 10. ——, A connection between the Baker-Hausdorff formula and a problem of Burnside, Ann. of Math. vol. 52 (1950) pp. 111-126.
- 11. E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160.

PRINCETON UNIVERSITY,

PRINCETON, N. J.